Chemical shift-based water/fat separation: A comparison of signal models
نویسندگان
چکیده
منابع مشابه
Chemical shift-based water/fat separation: comparison of fitting models
INTRODUCTION Quantitative water/fat separation in MRI requires careful modeling of the acquired signal. Multiple signal models have been proposed in recent years, but their relative performance has not yet been established. This abstract presents a comparative study of 12 signal models for water/fat separation. The models were selected according to three criteria: magnitude or complex fitting [...
متن کاملCompressed sensing for chemical shift-based water-fat separation.
Multi echo chemical shift-based water-fat separation methods allow for uniform fat suppression in the presence of main field inhomogeneities. However, these methods require additional scan time for chemical shift encoding. This work presents a method for water-fat separation from undersampled data (CS-WF), which combines compressed sensing and chemical shift-based water-fat separation. Undersam...
متن کاملa comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولDigital Binary Phase-shift Keyed Signal Detector
We have developed the effective algorithm for detecting digital binary phase-shift keyed signals. This algorithm requires a small number of arithmetic operations over the signal period. It can be relatively easy implemented based on the modern programmable logic devices. It also provides high interference immunity by identifying signal presence when signal-to-noise ratio is much less that its w...
متن کاملTopology-based signal separation.
Traditional noise-filtering techniques are known to significantly alter features of chaotic data. In this paper, we present a noncausal topology-based filtering method for continuous-time dynamical systems that is effective in removing additive, uncorrelated noise from time-series data. Signal-to-noise ratios and Lyapunov exponent estimates are dramatically improved following the removal of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Magnetic Resonance in Medicine
سال: 2010
ISSN: 0740-3194
DOI: 10.1002/mrm.22455